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Abstract 

We develop a Bayesian probability network model to characterize eutrophication in the 

Neuse River Estuary, North Carolina, and support the estimation of a TMDL for nitrogen. 

Unlike conventional simulation models, Bayesian network models describe probabilistic 

dependencies among system variables rather than substance mass balances.  Full networks 

are decomposable into smaller submodels, with structure and quantification that reflect 

relevant theory, judgment, and/or observation.  Model predictions are expressed 

probabilistically, which supports consideration of frequency-based water quality standards 

and explicit estimation of the TMDL margin of safety.  For the Neuse Estuary TMDL 

application, the Bayesian network can be used to predict compliance with the dissolved 

oxygen and chlorophyll a regulatory criteria as a function of riverine nitrogen load.  In 

addition, the model includes ecological endpoints, such as fish kills and shellfish survival, 

that are typically more meaningful to stakeholders than conventional water quality 

characteristics.  Incorporating these unregulated attributes into TMDL decisions will require 

explicit consideration of costs, benefits, and relative likelihoods of various possible outcomes 

under alternate loading scenarios. 

 

Keywords:  Neuse Estuary Bayesian Ecological Response Network (Neu-BERN), risk 

analysis, water quality modeling, Total Maximum Daily Load (TMDL), decision-making 
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Introduction 

The Neuse River estuary, North Carolina (Figure 1), has been experiencing severe 

consequences of eutrophication in recent years including excessive algal blooms, low levels 

of dissolved oxygen, declining shellfish populations, large fish kills, and outbreaks of toxic 

microorganisms.  These problems have led to the Neuse River being declared one of the 

twenty most threatened rivers in the United States (ARF 1997).  The Neuse River estuary has 

also been included on the federal list of impaired waters under section 303(d) of the Clean 

Water Act.  As in many other marine systems, nitrogen has been identified as the pollutant of 

concern in the estuary because it is believed to stimulate the excessive algal growth that is at 

the root of other ecological problems.  Therefore, the USEPA has required that a Total 

Maximum Daily Load (TMDL) for nitrogen be developed by the State of North Carolina.  

TMDLs establish the maximum pollutant loading to a water body that will allow it to meet 

water quality standards and attain its designated uses (Office of Water 1999).  These 

assessments then provide the basis for states to require watershed-based pollutant controls to 

achieve the TMDL.  The impaired condition of waters across the nation underlies the 

requirement that thousands of TMDLs for pollutants must be developed in the next ten years 

(NRC 2001).  

To develop a TMDL, a linkage must be defined between the pollutant load and the 

symptoms of water quality impairment.  In many cases, water quality models provide the 

scientific basis for this pollutant-effect relationship and therefore play a critical role in 

pollutant load decisions.  Most receiving water models used for TMDL development are of 

the deterministic, mechanistic variety (Lung 2001; Office of Water 1997a).  That is, they 

reflect the belief that the values of water quality endpoints are determined by a finite set of 

processes that can be represented by mathematical expressions.  Once calibrated to a system 
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of interest, these models are assumed to adequately represent reality, and various pollutant 

reduction strategies are simulated with the model to anticipate water quality effects. 

Simulation models of increasing mechanistic complexity have been developed and 

applied in recent years (Thomann 1998), yet there is little evidence that much confidence can 

be attached to the predictions of such models (NRC 2001).   While calibration studies may 

sometimes show a close fit between predictions and the observations to which models are 

calibrated, verification studies against different sets of data suggest that prediction errors may 

be large, particularly for models of higher resolution and greater mechanistic detail (Reckhow 

1994).  This result should not be surprising considering the complexity of natural systems 

relative to even the most sophisticated simulation models.  It is not reasonable to expect that 

all of the mechanisms of natural systems can ever be fully understood and assembled into 

accurate predictive models (Pace 2001).  Nature is simply too complex. 

The difficulty with exact representation of nature is even more problematic when 

attempting to extend water quality models to ecological endpoints, such as fish kills, shellfish 

mortality, or fish health.  At the scale employed by most simulation models, the ecological 

processes associated with these attributes are too complex or stochastic to be characterized 

mathematically.  For this reason, most mechanistic simulation models are only used to predict 

biochemical variables such as chlorophyll a or dissolved oxygen concentration.  Decision-

makers are then left in the difficult position of having to extend model results to the water 

body attributes of true concern to the public.    

An alternative approach to modeling is one that has been adopted by physicists who 

use probabilistic expressions to characterize the aggregate effects of small-scale molecular 

motion.  In a similar manner, water quality modelers can summarize small-scale, 

unpredictable, or unmanageable processes with probabilistic expressions and then focus 

model development on describing the large-scale effects of the most important controlling 
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factors. Models of this type may be more useful for decision support because they can 

provide direct answers to questions about large-scale ecosystem response.  Such policy-

relevant questions broadly concern the relationship between a management option and an 

attribute of concern to the public, such as, “Will the frequency (probability) of fish kills in the 

Neuse estuary be reduced to a tolerable level by a 30% nitrogen load reduction?”  Replication 

of detailed environmental processes is not usually required to answer such questions. 

These observations about the type of models useful for supporting TMDL decisions 

suggest the general utility of Bayesian networks (Pearl 1988).  Also known as probability 

networks, belief nets, Bayes nets, or influence diagrams, Bayesian networks are graphical 

models that depict the nature of relationships among a number of uncertain variables.  These 

relationships are quantified using mathematical models, data, or expert opinion that capture 

the aggregate effect of the controlling processes.  The effects of secondary processes are then 

summarized with probabilistic expressions. 

We describe the development and application of a Bayesian network model for 

TMDL evaluation in the Neuse River estuary (the Neuse Estuary Bayesian Ecological 

Response Network, or Neu-BERN).  The network combines relevant information expressed 

in a variety of forms into one cohesive structure linking riverine nitrogen loading to the 

ecological consequences of importance to the public.  Most of the individual model 

relationships are described in detail in our previous publications.  Our focus here is on the 

integration of these relationships into a Bayesian network useful for TMDL decision support. 

 

Modeling Method 

Fundamental to the utility of Bayesian networks is their graphical depiction.  In such a 

graph, round cells represent important system variables and connecting arrows represent 

dependent relationships among these variables.  Relationships may reflect direct causal 
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dependencies or the aggregate effect of more complex associations.  The conditional 

independence implied by the absence of a connecting arrow between two nodes greatly 

simplifies the modeling process by allowing separate submodels to be developed for each 

relationship indicated by the presence of an arrow.  These submodels characterize conditional 

probability distributions that reflect the aggregate response of each variable to changes in its 

up-arrow “parents”, together with the uncertainty in that response (Pearl 2000).  

Submodels may be based on either (1) mathematical representation of dominant 

processes, (2) statistical associations derived from historical data, or (3) probabilistic 

quantities elicited from scientific experts.  Any model representation or level of mechanistic 

detail is appropriate as long as the uncertainty associated with each relationship can be 

quantified in the form of a conditional probability distribution. We believe that models that 

are based on mechanistic understanding yet remain within the bounds of data-based 

parameter estimation will be particularly useful tools in this regard.  The incorporation of 

mechanism will improve confidence in predictions made for changed conditions, while the 

statistical methods will provide an empirical basis for parameter selection and allow for 

estimates of predictive uncertainty.  

Unfortunately, appropriate and sufficient observational data may not always exist to 

estimate the parameters of even simple mechanistic models.  As a consequence, the elicited 

judgment of scientific experts may be required to quantify some of the probabilistic 

relationships.  Of course, the use of subjective judgment is not unusual in TMDL modeling.  

Even the most process-based computer simulations rely on subjective judgment as the basis 

for the mathematical formulations and the choice of parameter values.  Thus, the explicit use 

of scientific judgment in Bayesian networks should be an acceptable practice.  In fact, by 

formalizing the use of judgment through well-established techniques for expert assessment 
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(see Morgan and Henrion 1990), the Bayesian network method may improve the chances of 

accurate and honest predictions. 

Once all significant system variables are linked in a single network using conditional 

probabilistic relationships, predictive distributions of model endpoints can be generated for 

any set of values for input variables.  These predicted endpoint probabilities, and the relative 

change in probabilities between alternative scenarios, convey the expected system response to 

management while fully accounting for predictive uncertainties.  Such uncertainties, which 

arise from both model uncertainty and natural variability, give decision makers and 

stakeholders an explicit characterization of the risk of non-attainment of TMDL management 

objectives.  

 

Identification and Development of Model Relationships 

A graphical model representing the variables and relationships important to 

eutrophication in the Neuse Estuary has been developed through a joint process of 

stakeholder involvement and scientific characterization (Borsuk et al. 2001a).  Predictive 

endpoints include algal density, as measured by chlorophyll a concentration, abundance of 

the toxic microorganism Pfiesteria piscicida, fish population health, frequency of fish kills, 

and shellfish survival (Figure 2).  These are related to their immediate causal variables which 

are then related back to their causes, and so on, back to variables that can either be considered 

marginal variables representing natural variability, or those that will be influenced by TMDL 

management decisions.  This qualitative diagram then serves as the framework for 

developing quantitative submodels to relate the selected variables.  Because intermediate 

variables and relationships are included in the model only if they contribute to our ability to 

predict model endpoints, the model can be best explained by starting with the endpoints and 

proceeding in the “up-arrow” direction. 
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Fish kills 

As revealed by the stakeholder study, the frequency of fish kills is an attribute of 

significant concern to the public and decision-makers of the Neuse basin.  The current 

scientific belief is that large fish kills are predominantly caused by a combination of low 

oxygen bottom water (hypoxia) and wind conditions that force that bottom water to the 

surface, trapping fish along the shores where they suffocate (Crowder 1998).  Fish are 

generally more susceptible if they are already in poor health.  Therefore, a probabilistic 

prediction of fish kills depends on the health of the fish population, the temporal extent to 

which the estuary experiences hypoxic conditions, and the frequency of cross-channel, 

“trapping” wind conditions (see Fig. 2).  

Of course, a fish kill requires the presence of fish in the area of the upwelling, 

concurrent with the trapping winds and the presence of hypoxic bottom water.  Even with this 

combination, fish may be able to react and swim away from the upwelling, making 

mechanistic prediction of the exact timing of fish kills impossible.  Therefore, we relied upon 

the elicited judgment of two experienced estuarine fisheries researchers to characterize the 

probability of fish kills conditioned on a given state of fish population health, the occurrence 

of a strong cross-channel wind, and varying bottom water concentrations (Borsuk et al. 

2002a).  Asking for a probability conditioned on a number of circumstances allowed the 

scientists to focus on the likelihood of a fish kill only under certain given situations (upon the 

coincidence of a number of causative factors), rather than having to simultaneously consider 

the background frequency of the causative variables.  The frequency of cross-channel winds 

can be considered to be a marginal node, without parents, since historical data and 

observation exist on their occurrence but they cannot be controlled by management.  
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Prediction of the temporal extent of hypoxia, however, is conditional on the pattern of bottom 

water oxygen concentrations.   

 

Hypoxia 

Oxygen concentration is determined by both the rate of sediment oxygen consumption by 

bacterial respiration and the duration that the bottom waters are separated from the surface 

due to salinity stratification (Paerl et al. 1998; Stanley and Nixon 1992).  This relationship 

was quantified using a process-based model of oxygen depletion that is consistent with 

established theory yet is simple enough to be empirically parameterized from available 

monitoring data (Borsuk et al. 2001c).   The model represents the processes of microbial 

oxygen consumption and physical reoxygenation, including the effects of temperature and 

vertical stratification. Nonlinear regression allowed for the direct estimation of rate constants 

from field data.  The resulting model can be used to probabilistically predict the frequency of 

bottom water hypoxia, conditional on the annual average rate of benthic oxygen demand and 

duration of stratification (see Fig. 2).  It is generally believed that stratification begins to set 

up whenever cross-channel winds are calm enough to avoid mixing for more than one day 

(Luettich 1998).  Therefore, a variable describing the number of consecutive days between 

winds of sufficient strength to mix the system is the only variable relevant to stratification.  

This variable, like fish kills, is dependent on the frequency of strong cross-channel winds. 

 

Benthic oxygen demand 

Benthic oxygen demand is dependent on the decay rate of organic matter in the 

sediments, which, in turn, is dependent on the amount of organic matter available (Rizzo and 

Christian 1996).  In a eutrophic estuary such as the Neuse, most of the sediment organic 

matter is believed to be internally derived via carbon fixation by algae, rather than externally 
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derived via river loading of terrestrial material (Alperin et al. 2000).  Because regular 

measurements are not made of the organic matter decay rate or the sediment organic carbon 

content, these intermediate steps are not included in the model, and a direct link is shown 

between algal carbon production and sediment oxygen demand (see Fig. 2).  

While abundant water quality monitoring data exist for the Neuse, the historical 

values of algal carbon production do not span the range that may be expected under a 

significant anthropogenic change in nutrient inputs.  Therefore, we relied on cross-system 

data from 34 estuaries and coastal zones to parameterize a simple, mechanistic model relating 

carbon production and sediment oxygen demand, including the effects of water column decay 

and sediment burial (Borsuk et al. 2001b).  To do this, we employed a hierarchical approach 

which assumes partial, but not complete, commonality in parameter values across different 

estuarine systems.  Both global and system-specific parameters were estimated using 

Bayesian inference.  Using the parameters estimated for the Neuse estuary, annual average 

sediment oxygen demand can be expressed as a probabilistic function of water depth and 

annual average carbon production (see Fig. 2).  

 

Algal carbon production 

Algal carbon production is primarily determined by algal density, although water 

temperature also plays an important role (Mallin et al. 1991).  Additionally, light intensity 

and photic depth have been shown to be significant factors (Boyer et al. 1993; Cole and 

Cloern 1987).  However, while these are both observable variables (in that they can be 

measured), they are neither manageable by nitrogen controls nor predictable from other 

known factors (as water temperature is from the seasonal cycle).  Therefore they are not 

explicitly included, and the variability they cause becomes part of the model uncertainty (see 

Fig. 2) 
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To predict primary productivity from algal density, we used a generalized version of 

the model proposed by Cole and Cloern (1987) and subsequently modified for the Neuse by 

Mallin et al. (1991) and, later, by Boyer et al. (1993).  The model, which expresses daily algal 

carbon productivity as a function of biomass and water temperature was fit to approximately 

five years (mid 1994 through 1999) of biweekly monitoring data at 11 mid-channel sampling 

locations within the Neuse River estuary (Borsuk et al. 2002c).   

 

Algal density 

Among the factors believed to control algal density are nitrogen inputs and water 

temperature (Pinckney et al. 1997).  Additionally, river flow has been shown to be an 

important factor (Mallin et al. 1993), perhaps because of its influence on estuarine salinity, 

turbidity, and water residence time.  Detailed measurements of water temperature, river flow, 

and river nitrogen concentration exist, making these suitable marginal nodes (see Fig. 2). 

Other potential sources of nitrogen to the estuary, including atmospheric sources and 

groundwater (Paerl et al. 1995), are not considered in this analysis because the TMDL 

process only regulates nitrogen inputs from the river.  

 The relationship between algal density, as measured by chlorophyll a concentration, 

estuarine location, water temperature, and incoming Neuse River flow and total nitrogen 

concentration was developed using a regression model fit to approximately five years (mid 

1994 through1999) of biweekly monitoring data (Borsuk et al. 2002c).  Although algal 

density, itself, may be an important policy variable, of particular concern is the frequency 

with which chlorophyll a levels exceed the state water quality standard of 40 µg/L.  

Therefore, a variable representing this exceedance frequency is shown explicitly in the 

network (see Fig. 2) and its distribution is derived from the distribution of chlorophyll values 

as described by Borsuk et al. (2002d). 
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Fish health 

 Another attribute of policy relevance is fish population health.  While a number of 

factors affect the health of the Neuse estuary fish population, only the effects of hypoxia can 

be controlled through nitrogen reductions.  Harmful effects of low oxygen on fish include 

reduced feeding and growth rates (McNatt et al. 2000) and increased predation from larger 

fish and invertebrates (Breitburg et al. 1994).  Extensive hypoxia can also reduce usable 

habitat, altering fish distribution and increasing competition (Pihl et al. 1991).  These impacts 

diminish the health and productivity of the fish population and make them more vulnerable to 

both disease and episodic fish kill events.   

One approach to predicting the population consequences of sublethal oxygen effects 

has been to develop individual-based models (Huston et al. 1988) linking fish to all the 

processes and subprocesses associated with the effects (Breitburg et al. 1999).  However, 

information of sufficient detail to parameterize such a model does not exist for the Neuse 

estuary.  Therefore, the relationship between fish population health and the annual extent of 

bottom water hypoxia was elicited from the same estuarine fisheries scientists questioned for 

the fish kill model (Borsuk et al. 2002a).  Many different definitions of population health are 

possible, so we asked the researchers to develop a definition that was consistent with their 

knowledge and experience.  They chose to use a categorical variable, with levels defined as, 

Excellent:   High average growth rates (> 0.6 mm/d); low incidence of visible 

disease (<1%) on all fish but menhaden; 

Good: Medium average growth rates (< 0.6 and > 0.2 mm/d); low incidence 

of visible disease (<1%) on all fish but menhaden; 

Poor:   Poor average growth rates (< 0.2 mm/d); medium/high incidence of 

visible disease (>1%) on all fish but menhaden; 
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where growth rate is measured in the field as described by Eby (2001).  Atlantic menhaden 

were specifically excluded from measures of the incidence of visible disease because of their 

high susceptibility to infections and parasites and the seasonal nature of their disease patterns 

irrespective of oxygen conditions (Goldman et al. in review). 

With the health categories defined, questions were next asked regarding the 

probability of population health being in each of the categories, given a particular temporal 

extent of low oxygen.  Since earlier studies have revealed that low oxygen is only a concern 

at high water temperatures (Borsuk et al. 2001c), we focused attention on the summer season.  

The scientists’ assessments were based on the results of their monthly fish trawling and water 

quality sampling program in the Neuse estuary, as well as a set of in situ caging experiments 

(Eby 2001).  Such experience-based, probabilistic judgments represent the estimated net 

result of a number of interacting processes and sources of uncertainty.  

 

Shellfish survival 

Shellfish face a similar situation as finfish when subjected to hypoxia.  However, 

because shellfish are sessile, it is  not only their health, but also their abundance, that is 

threatened by long-term exposure to low oxygen conditions.  In this regard, both the duration 

and severity of hypoxia are important considerations, prompting the arrows from nodes 

representing both duration of stratification and dissolved oxygen concentration (see Fig. 2). 

To relate oxygen status to shellfish abundance in the Neuse River estuary, we 

developed a survival model for the clam species Macoma balthica (Borsuk et al. 2002b).  The 

survival rate of M. balthica was chosen as an indicator for shellfish abundance because M. 

balthica plays a critical role in the Neuse ecosystem.  This later-succession bivalve is the 

major component of benthic biomass in the estuary as well as a valuable food resource for 

demersal fish species and blue crabs.  
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Field studies have shown that the late-summer pattern of abundance of M. balthica in 

the Neuse closely matches the pattern of extended exposure to summertime hypoxia (Powers 

et al. In review).  However, experimental studies have not yet been performed to directly 

address the sensitivity of this species to low oxygen conditions.  Therefore, this sub-model 

relied upon the expert judgment of two marine biologists to provide the data used in model 

building.  The elicitation method that we used was based on a series of questions to establish 

points on the cumulative distribution function of times-to-death for multiple dissolved 

oxygen concentrations.  Model parameters were then estimated from the assessed data using 

Bayesian methods.  The resulting model probabilistically relates survival of M. balthica to 

time of exposure (duration of stratification) and dissolved oxygen concentration, as required 

for the network model (Figure 2). 

 

Pfiesteria abundance 

The toxic dinoflagellate, Pfiesteria piscicida, is a concern to the public at least in part 

because of the large amount of media attention it has received in recent years.  It has been 

blamed for having a role in the occurrence of fish kills both by directly attacking the fish and 

by making them more susceptible to harsh conditions (Burkholder 1999).  Pfiesteria has also 

been found to adversely impact the health of laboratory researchers studying the organism by 

causing respiratory and neurological distress (Glasgow et al. 1995).  However, the potential 

threat to people exposed to Pfiesteria under natural conditions is highly controversial 

(Griffith 1999), and the distinct role the organism plays in fish kills is uncertain (Stow 1999).  

Many of the scientists we spoke with felt that Pfiesteria was just one of many stressors that 

affect fish, and if Pfiesteria were not present in the estuary, other opportunistic organisms 

would be.  Thus, to satisfy the interests of the stakeholders, Pfiesteria abundance was 

included as a variable in the model.  However, it was not explicitly linked to fish population 
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health or fish kills, nor was a human health effect included.  Perhaps as more laboratory 

research, fieldwork, and health studies are conducted in the future, the role of Pfiesteria in the 

network can be modified accordingly.  

The factors potentially controlling the presence of Pfiesteria cells in the water column 

were recently investigated using a set of mesocosm experiments by Pinckney et al. (2000).  

These experiments were designed to test the response of Pfiesteria zoospores to a range of 

environmental conditions and potential prey species.  Results showed that the density of 

Pfiesteria-like organisms (PLOs) was positively correlated with phytoplankton productivity 

and total phytoplankton biomass (as measured by chlorophyll a).  Apart from the correlation 

with algal biomass and productivity, PLOs showed no additional significant response to 

nutrient, sediment, or mixing treatments in any of the experiments.  These results suggest that 

PLOs track the abundance of their prey resources.  Fensin (1998) also found a positive 

correlation between PLOs and phytoplankton biomass (as chlorophyll a) in field samples 

collected from the Neuse estuary during 1994 and 1995.   

We used the data of Pinckney et al. to develop a functional relationship between algal 

density and PLOs (Borsuk 2001).  Data collected by Fensin were not available for our 

analysis.  Our analysis showed that PLO cell counts only reach levels of concern during the 

summer season.  For this reason, the functional equation was quantified using data collected 

in the summer only.  The relationship between algal density and PLOs was found to be 

approximately linear after a log-transformation of both variables, so parameters were 

estimated using ordinary least-squares regression.  

In expressing concern over Pfiesteria abundance, stakeholders were probably 

particularly concerned about densities that are potentially harmful.  A level of 250 cells/ml of 

toxic zoospores has been cited as a concentration sufficiently high to be lethal to fish 

(Burkholder et al. 1995).  Therefore, the frequency of daily cell densities above 250 cells/ml 
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in the summer season was included as a separate variable in the network.  Because the cell 

counts recorded by Pinckney et al. include all Pfiesteria-like organisms, both toxic and 

nontoxic, the results of our model can be considered an upper estimate of toxic forms. 

 

Integration of Relationships into Bayesian Network 

The set of probabilistic relationships described in the previous section can be joined 

into one integrated network (Figure 3).  Each relationship describes the most likely value of 

the response variable conditional on the values of each of its parents (solid lines in Figure 3).  

The uncertainty in this relationship, resulting from both model error and parameter 

uncertainty, is captured by conditional probability distributions (represented by dashed lines 

in Figure 3).  When marginal, or unconditional, distributions are specified for each of the 

outermost variables (nodes without parents), the resulting predictive distributions of all the 

remaining variables can be calculated from the network.  Marginal distributions for the 

variables river flow, nitrogen inputs, water temperature, and duration of stratification can be 

derived from historical data and adjusted, as appropriate, to represent various management 

alternatives. 

We used Analytica, a commercially available software program (Lumina 1997), for 

implementing the Bayesian network for the Neuse estuary.  Analytica allows for the use of 

continuous or discrete variables related by any functional expression.  Uncertainty can be 

represented by a wide variety of probability distributions and is propagated through the 

network using Monte Carlo or Latin hypercube sampling. 

 

 

Model-Based TMDL Evaluation 
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To illustrate the use of probabilistic network predictions for TMDL evaluation, we 

evaluated five possible scenarios corresponding to nitrogen reductions of 0, 15, 30, 45, and 

60% relative to 1991-1995 baseline inputs.  The period 1991-1995 was chosen by the N.C. 

Division of Water Quality as the reference period for the Neuse River TMDL (NCDWQ 

2001b).  Therefore, daily data from those years served as the basis for the marginal input 

variables.  These variables were represented in the network as a multivariate empirical 

distribution to maintain any underlying dependencies (indicated by histograms connected by 

dashed, double-headed arrows in Figure 3).  Missing values for the marginal variables were 

estimated from flow models as described by Borsuk et al. (2002c).  The four nitrogen 

reduction scenarios were evaluated by multiplying all riverine nitrogen concentrations by the 

complement of the appropriate reduction.  All other functions and marginal nodes in the 

model were left unchanged, and new distributions were computed for the variables of 

interest. The Latin hypercube sampling method was used to draw 250 samples of all model 

parameter and error distributions.  The median predicted value for each model endpoint as 

well as the outer limits of the 50% and 90% predictive intervals were then calculated to 

indicate overall response and predictive uncertainty.  Although many of the functional 

relationships among variables were developed to be applicable to multiple regions of the 

estuary, we chose the middle region (Figure 1) as the focus of this assessment.  This is 

historically the region with the greatest extent of hypoxia and the most frequent occurrence of 

fish kills. 

Model predictions (Figure 4) show that under the baseline scenario of no nitrogen 

reduction the annual average chlorophyll a concentration in the middle region of the estuary 

is expected to be slightly above 20 µg/L, and the state chlorophyll standard of 40 µg/L will 

most likely be exceeded on more than 10% of the days.  As nitrogen inputs are reduced, both 

the average chlorophyll concentration and the chlorophyll standard exceedance frequency are 
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also expected to decrease.  However, only at reductions of 45% relative to the baseline is the 

median exceedance frequency predicted to approach the 10% EPA guideline (Office of Water 

1997b).   

Without nitrogen reductions, Pfiesteria-like cell densities at levels of concern are 

expected to occur between 5 and 17 days during the summer season.  This value is expected 

to decrease in concert with chlorophyll reductions.  However, as is the case for chlorophyll, 

the uncertainty in model predictions increases as conditions depart from overall mean values 

where the model is most precise.  In this case, the scenario with greatest precision is 

somewhat below baseline because the middle section of the estuary is more impaired relative 

to the other sections to which the model was also fit.  The increase in uncertainty at greater 

nitrogen reductions implies that the upper range of predicted values is essentially equal for 

each reduction scenario greater than 30%. 

Under the baseline scenario, the summer survival rate of Macoma clams is predicted 

to be low with a median value below 10% but, given model uncertainty and natural 

variability, is likely to be as low as near 0% or as high as 40%.  For comparison, during the 

summer of 1997, the first year of extensive benthic surveying, the Macoma  clam community 

was estimated to be reduced to less than 20% of its spring population (Peterson et al. 2000). 

The most likely state of fish population health under baseline conditions is “good” with a 

probability of 0.55, while “excellent” has a probability of 0.32 and “poor” of 0.13.  Both 

summertime shellfish survival and overall fish population health are predicted to increase 

slightly in response to reduced nitrogen inputs.   

In any scenario, fish kills are predicted to be relatively infrequent events.  For this 

reason, probabilities are expressed as the expected number of fish kills in a ten-year period.  

Without any nitrogen reduction, the model predicts between 5 and 20 kills in ten years 

involving more than 1,000 fish in the middle portion of the estuary.  For reference, there were 
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8 fish kills of this size in this region during the ten years 1989 through 1999.  Additionally 

there were 6 kills in which the number of fish involved was not reported (NCDWQ 2001a).  

The frequency of fish kills is not expected to change substantially with nitrogen reductions. 

The reason for the relatively minor response of the ecological endpoints can be 

discovered by looking at the trends in carbon production and days of summertime hypoxia 

(Figure 5).  While carbon production is predicted to decrease relative to baseline values of 

350 to 500 gC/m2y in response to reduced algal stimulation, this effect is dampened out 

further down the causal chain, so that the change in the number of days of resulting 

summertime hypoxia is relatively insignificant.  The further we move down the probability 

network and away from the decision variable, the greater the predictive uncertainty.  This is 

due to the uncertainty that is added in every successive relationship, as well as the increasing 

effects of natural variability. 

 

Using Model Results for TMDL Decision-Making 

Given a set of predictions regarding multiple ecological endpoints, the choice of an 

appropriate load reduction depends on the levels determined by decision-makers to be 

acceptable for one or more of those endpoints.  Such a determination might be based on an 

analysis of associated costs and benefits (Johansson 1993), a multiattribute utility calculation 

(Clemen and Reilly 2001), a risk assessment procedure (Suter and Barnthouse 1993), or 

compliance with a predetermined standard (Barnett and O' Hagan 1997).  Choosing 

appropriate decision criteria is a task for policy-makers, not scientists, because it is a value-

based, rather than belief-based, exercise, involving the characterization of societal desires 

rather than the behavior of a natural system.  Unfortunately, such an analysis has not been 

performed for the Neuse management situation.  The only decision criteria that currently exist 

are the state chlorophyll standard of 40ug/L and the EPA guidance mandating fewer than 
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10% exceedances of this standard.  Thus, our discussion regarding the use of the model 

results for decision-making will focus on the chlorophyll endpoint, although the ideas will be 

equally relevant to any of the other endpoints once appropriate decision criteria are 

determined. 

If 10% is considered the maximum acceptable frequency of exceedances of the state 

chlorophyll standard, then the target nitrogen reduction can be graphically determined from 

the plot of model results (Figure 6) by drawing a horizontal line at the 10% value and 

observing where it intersects the curve of predictions.  Drawing a vertical line from this 

intersection to the horizontal axis suggests the necessary reduction.  However, given the 

uncertainty in model predictions, even with a fixed decision criterion the choice of a nitrogen 

reduction depends on the degree of confidence required by decision makers.  Using only the 

median predictions (or, equivalently, model predictions that do not account for uncertainty) 

implies 50% confidence that the criterion will be met.  If a higher degree of confidence is 

required, then the outer bound of an appropriate predictive interval must be used in the 

graphical determination.  The difference between the nitrogen reduction necessary to achieve 

50% confidence and the reduction necessary to achieve a higher level of confidence can be 

considered the margin of safety.  

Inclusion of a margin of safety in the determination of a TMDL is required under the 

Clean Water Act (CWA Section 303(d)(1)(c)).  Generally this is accomplished through 

conservative model assumptions (Office of Water 1999).  However, this practice confounds 

values with scientific beliefs and obscures the fact that in making these assumptions the 

modeller implicitly chooses a particular level of confidence.  Choosing the degree of 

confidence required of a model is a risk management decision that should be made by 

designated officials, not water-quality modellers. Such a decision should be based on 

consideration of the potential cost to stakeholders of continued impairment despite the 
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attainment of the chosen nitrogen reduction.  A model that assesses the uncertainty associated 

with predictions provides an explicit basis for choosing a TMDL that includes a margin of 

safety. Given a quantitative water quality standard and probabilistic model results expressed 

as the degree of confidence that a criterion will be met for any given loading level (Figure 6), 

decision-makers simply need to choose the percent reduction that corresponds to their desired 

level of confidence. 

The margin of safety depends on both the risk tolerance of decision-makers and the 

predictive uncertainty in the water quality model being used to support the decision.  Thus, 

the size of the margin might be reduced in either of two ways: (1) decision-makers and 

stakeholders must settle for a lower degree of confidence in achieving their objectives, or (2) 

predictive uncertainty must be reduced.  Assuming that the chosen confidence level is based 

on a rational process that cannot be changed (perhaps an unlikely assumption!), then the 

margin of safety is wholly reliant on the uncertainty inherent in model predictions.  Because 

the size of the margin of safety has a direct impact on the nitrogen reduction required and 

therefore on the cost of management, adequate uncertainty analysis of TMDL models should 

be a high priority. 

 

Discussion 

The probability network, Neu-BERN, is one of multiple estuarine response models 

currently being used to inform the near-term selection of a TMDL for the Neuse River (see 

Bowen et al. and Wool et al. this issue).  Compared to the others, its process-representation is 

relatively simple (see Roessler et al. this issue).  Complex physical, chemical, and biological 

processes are combined into aggregate components described by measurable, operationally 

defined variables.  The model does not invoke more than is necessary, emphasizing the fact 

that it should not be considered a representation of reality, but rather a simplification for a 
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limited purpose.  In this case, the purpose is to serve as a framework for TMDL decision-

making by organizing current scientific understanding and assumptions.  This information 

may exist in a variety of forms, including historical monitoring data, cross-system 

comparisons, mesocosm results, modelling experiments, or observational experience; a 

Bayesian network can explicitly accommodate such variety. 

Results of the integrated model show that predictive uncertainty, arising from both 

natural variation and knowledge uncertainty, is high.  This is especially true for variables that 

are not easily measured (such as shellfish survival), infrequent to occur (fish kills), or further 

down the causal chain (fish health).  However, these types of variables are precisely those 

that are of greatest concern to the public and decision-makers.  This suggests that additional 

data collection is necessary, particularly on some of the more uncertain relationships.  These 

include the effect of nitrogen inputs and water temperature on algal density, the relation 

between algal density and carbon production, and the connection between hypoxia and fish 

kills (see Figure 3).  It should be kept in mind, however, that there is a limit to predictive 

precision.  Stochastic variability is an inherent property of natural systems and contributes 

uncertainty that must be considered but, for a given model, cannot be reduced.  Recognizing 

this fact will help water quality stakeholders maintain realistic expectations concerning 

ecological forecasts. 

The presence of significant uncertainty in model-based TMDL predictions should not 

preclude decisive management action.  Model results indicate that nitrogen reductions are 

likely to lead to ecological improvements however uncertain the magnitude of those 

improvements may be.  Preliminary implementation plans can be made under the condition 

that additional monitoring and research will occur.  In fact, models that quantify uncertainty 

facilitate the prioritization of future data collection efforts based on their ability to improve 

predictions.  After new information is obtained, new predictions are generated and a revised 
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set of actions and research strategies is developed.  This process can be repeated until 

stakeholder objectives are met or additional management costs exceed the expected benefits. 

Decision-oriented methodologies similar to that presented here have been proposed 

previously for estuarine nutrient assessment.  Jaworski and Villa (1981) suggest an 

integrative approach using multiple, publicly meaningful criteria.  They acknowledge that 

various quantitative methods, from subjective analyses to complex mathematical models, 

may be suitable depending on available information.  They also emphasize the need for 

communicating uncertainties in model relationships by expressing predictions 

probabilistically.  However, their framework is merely conceptual and is not accompanied by 

specific quantitative tools or applications.  Our present analysis demonstrates Bayesian 

networks as one possible tool for this type of evaluation and presents results for a specific 

TMDL application. 

More recently, Fitzpatrick and Meyers (2000) reviewed methods for determining 

estuarine nutrient criteria and highlighted the variety of approaches that may be possible, 

depending on the situation.  However, similar to the general stance of the EPA, they suggest 

that simple, databased models be used only for initial screening purposes, to be replaced by 

more realistic simulation models for final analysis.  We disagree with this view and believe 

that simple models focusing on the major processes may be more realistic and useful 

representations of natural systems than complex models that strive to include processes at 

every scale.  Scientific understanding of mechanism is advanced, but only to the point of 

being able to characterize aggregate relationships, not to quantify all of the small-scale 

dynamics.   

Recognizing the limits of mechanistic knowledge is especially important when 

attempting to extend water quality attributes to ecological effects.  Ecological variables are 

more reliable indicators of whether a water body is meeting its designated uses, and their 
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importance to future TMDL determination has been emphasized (NRC 2001).  By permitting 

carefully elicited expert knowledge as a practical alternative to “hard” data, the Bayesian 

approach facilitates extension of models to ecological endpoints.  Scientific experts can 

assess the response of ecological variables to their immediate causes and then summarize 

remaining variability and uncertainty using probabilistic expressions.  Predictions expressed 

as probabilities then give stakeholders and decision-makers realistic expectations of the 

chances of achieving desired outcomes.  This type of knowledge can be expected to lead to 

more informed and effective TMDL decisions.
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