Skip to content
Analytica > Blogs > Uncertainty analysis: are you sure about what you’re not sure about?

Uncertainty analysis: are you sure about what you’re not sure about?

Tracking uncertainty in the input data in a model and showing how different degrees of such uncertainty affect the final result are strengths of Analytica. However, uncertainty also arises in other dimensions than the input data alone. Uncertainty analysis extends across different domains accordingly. The functionality in Analytica can nevertheless help to converge on the truth in many of them.

Which uncertainty distribution fits best - Lognormal? Beta? Gamma?Image source: wikimedia.org

Stochastic uncertainty

Your data input may vary over different ranges, which may be open ended, semi-open ended or closed. Analytica lets you handle all three variations in an uncertainty analysis. It also gives you a wide range of different probability distributions corresponding to different situations in the real world: for instance, normal for biological characteristics such as weight, lognormal for investment returns, gamma for combinations of exponential distributions and so on.

Structural uncertainty

The parameters you include in the model may or may not adequately reflect the situation in the real world. While only users or modelers can determine the basis for a model, Analytica provides tools for a structural uncertainty analysis too. The influence diagram provides a rapid overview of the factors that have been built into the model and the existence of relationships between them. Sensitivity and importance analysis then allows factors with only minimal or negligible influence to be removed, simplifying the model and leaving room for other parameters to be added and evaluated in the same way.

Algorithmic uncertainty

The underlying mechanisms at work in the real world are often complex. Each parameter in the model is related algorithmically to at least one other parameter or to the final result. Once again, the perspicacity of the modeler determines the quality of the algorithms used. Analytica facilitates the modeler’s work and uncertainty analysis by allowing each parameter to be qualified with meaningful names and easily inspected for its relationships or dependencies via the influence diagram.

Variability

Where uncertainty is a lack of information about input data, variability is instead a description of the diversity of those data. This difference means that uncertainty is often underestimated and variability overestimated when the focus is solely on random error in the data (without taking into account measures of statistical variance, for example). On the other hand, the degree of variability can be a source of uncertainty and therefore subject to uncertainty analysis.

Stabilization of uncertainty

As uncertainty is propagated through a model in Analytica, increasing the number of Monte Carlo runs of a model will cause the final aggregate uncertainty model to stabilize more or less quickly: meaning you should know sooner or later how uncertain the outcomes are. Stabilization of uncertainty analysis can be expressed in terms of the convergence to a certain level for the standard deviation of the outcome, for instance. It will depend on how you have defined the algorithms in your model.

Too much simulation is better than too little

To ensure that measures of uncertainty in outcomes stabilize realistically, do more simulations than you think may be necessary. The integrated Monte Carlo functionality in Analytica means that such simulations remain relatively fast.

If you’d like to know how Analytica, the modeling software from Lumina, can help you to apply many kinds of statistical and uncertainty analysis, then try the free edition of Analytica to see what it can do for you.

Share now 

See also

air conditioner outdoor unit

Building electrification: heat pump technology

Lumina set out to build a useful tool to assess the benefits of heat pumps. Learn more about heat pumps and their impact.
More...

Heat pumps 101

Heat and cool your home while saving energy and reducing emissions by adopting heat pump technology. Learn more about this transition and heat pumps by watching this webinar.
More...
Heatpump

Navigating the heat pump landscape

Fort Collins, Lumina, and Apex Analytics have created a tool to help reduce greenhouse gas emissions by optimizing building electrification programs.
More...

US gas leaks much larger than previously estimated

A new Stanford-led study on natural gas leak rates from oil and gas activity across a large fraction of the US are about 3x more than previous government estimates. The
More...

See also

Building electrification: heat pump technology

Lumina set out to build a useful tool to assess the benefits of heat pumps. Learn more about heat pumps and their impact.

More…

Decision making when there is little historic precedent

Learn how to make decisions and strategic plans in uncertain situations, where historical data is not available. See how to model this in Analytica with clarity and insight.

More…

Does GPT-4 pass the Turing test?

In 1950, Alan Turing proposed “The Imitation Game”, today known as the Turing test, as a hypothetical way of measuring whether a computer can think [1]. It stakes out the...

More…

What is Analytica software?

Analytica is a decision analysis tool that helps you generate clearer and more justified results through modeling.

More…

Download the free edition of Analytica

The free version of Analytica lets you create and edit models with up to 101 variables, which is pretty substantial since each variable can be a multidimensional array. It also lets you run larger modes in ‘browse mode.’ Learn more about the free edition.

While Analytica doesn’t run on macOS, it does work with Parallels or VMWare through Windows.


    Analytica Cubes Pattern

    Download the free edition of Analytica

    The free version of Analytica lets you create and edit models with up to 101 variables, which is pretty substantial since each variable can be a multidimensional array. It also lets you run larger modes in ‘browse mode.’ Learn more about the free edition.

    While Analytica doesn’t run on macOS, it does work with Parallels or VMWare through Windows.


      Analytica Cubes Pattern

      Download the free edition of Analytica

      The free version of Analytica lets you create and edit models with up to 101 variables, which is pretty substantial since each variable can be a multidimensional array. It also lets you run larger modes in ‘browse mode.’ Learn more about the free edition.

      While Analytica doesn’t run on macOS, it does work with Parallels or VMWare through Windows.


        Analytica Cubes Pattern

        Download the free edition of Analytica

        The free version of Analytica lets you create and edit models with up to 101 variables, which is pretty substantial since each variable can be a multidimensional array. It also lets you run larger modes in ‘browse mode.’ Learn more about the free edition.

        While Analytica doesn’t run on macOS, it does work with Parallels or VMWare through Windows.


          Analytica Cubes Pattern

          Download the free edition of Analytica

          The free version of Analytica lets you create and edit models with up to 101 variables, which is pretty substantial since each variable can be a multidimensional array. It also lets you run larger modes in ‘browse mode.’ Learn more about the free edition.

          While Analytica doesn’t run on macOS, it does work with Parallels or VMWare through Windows.


            Analytica Cubes Pattern

            Download the free edition of Analytica

            The free version of Analytica lets you create and edit models with up to 101 variables, which is pretty substantial since each variable can be a multidimensional array. It also lets you run larger modes in ‘browse mode.’ Learn more about the free edition.

            While Analytica doesn’t run on macOS, it does work with Parallels or VMWare through Windows.


              Analytica Cubes Pattern